viernes, 13 de agosto de 2010

Apuntes 04: Estadística Inferencial. Correlación y Regresión.

Recursos:

Estadística Inferencial. Regresión y Correlación

La regresión como una técnica estadística, una de ellas la
regresión lineal simple y la regresión multifactorial, analiza la relación de dos o mas variables continuas, cuando analiza las dos variables a esta se el conoce como variable bivariantes que pueden corresponder a variables cualitativas. La regresión nos permite el cambio en una de las variables llamadas respuesta y que corresponde a otra conocida como variable explicativa, la regresión es una técnica utilizada para inferir datos a partir de otros y hallar una respuesta de lo que puede suceder.

Siendo así la regresión una técnica estadística, por lo tanto para interpretar situaciones reales, pero a veces se manipula de mala manera por lo que es necesario realizar una
selección adecuada de las variables que van a construir las formulas matemática, que representen a la regresión, por eso hay que tomar en cuenta variables que tiene relación, de lo contraria se estaría matematizando un galimatías.

Se pueden encontrar varios tipos de regresión, por ejemplo:
Regresión lineal simple
Regresión múltiple ( varias variables)
Regresión logística
Simple b) Múltiple, etc.

La regresión lineal técnica que usa variables aleatorias, continuas se diferencia del otro
método analítica que es la correlación, por que esta última no distingue entre las variables respuesta y la variable explicativa por que las trata en forma simétrica.
La matematización nos da
ecuaciones para manipular los datos, como por ejemplo medir la circunferencia de los niños y niñas y que parece incrementarse entre las edades de 2 meses y 18 años, aquí podemos inferir o predecir que las circunferencias del cráneo cambiara con la edad, en este ejercicio la circunferencia de la cabeza es la respuesta y la edad la variable explicativa.

En la regresión tenemos ecuaciones que nos representan las diferentes clases de regresión:
Regresión Lineal : y = A + Bx
Regresiòn Logarìmica : y = A + BLn(x)
Regresión Exponencial : y = Ac(bx)
Regresión Cuadrática : y = A + Bx +Cx2

Para obtener un modelo de regresión es suficiente establecer la regresión para eso se hace uso del coeficiente de correlación: R.
R = Coeficiente de correlación, este método mide el grado de relación existente entre dos variables, el
valor de R varía de -1 a 1, pero en la práctica se traba con un valor absoluto de R.
El valor del coeficiente de relación se interpreta de modo que a media que R se aproxima a 1, es más grande la relación entre los datos, por lo tanto R (coeficiente de correlación) mide la aproximación entre las variables.
El coeficiente de correlación se puede clasificar de la siguiente manera:

CORRELACIÒN VALOR O RANGO
1) Perfecta 1) R = 1
2) Excelente 2) R = 0.9 < = R < r =" 0.8" r =" 0.5">


Coeficiente de Correlación de Pearson
El coeficiente de correlación de Pearson es un índice estadístico que mide la relación lineal entre dos variables cuantitativas. A diferencia de la
covarianza, la correlación de Pearson es independiente de la escala de medida de las variables.
El cálculo del coeficiente de correlación lineal se realiza dividiendo la
covarianza por el producto de las desviaciones estándar de ambas variables:

Siendo:
σXY la covarianza de (X,Y)
σX y σY las desviaciones típicas de las distribuciones marginales.
El valor del índice de correlación varía en el intervalo [-1, +1]:
Si r = 0, no existe relación lineal. Pero esto no necesariamente implica una independencia total entre las dos variables, es decir, que la variación de una de ellas puede influir en el valor que pueda tomar la otra. Pudiendo haber relaciones no lineales entre las dos variables. Estas pueden calcularse con la razón de correlación.
Si r = 1, existe una correlación positiva perfecta. El índice indica una dependencia total entre las dos variables denominada relación directa: cuando una de ellas aumenta, la otra también lo hace en idéntica proporción.
Si 0 < r =" -1,">