Medidas de Tendencia Central
Nos indican en torno a qué valor (centro) se distribuyen los datos.
La medidas de centralización son:
La medidas de centralización son:
Media Aritmética
La media es el valor promedio de la distribución. Si se tiene una muestra estadística de valores (X1,X2,...,Xn) de valores para una variable aleatoria X con distribución de probabilidad F (x,?) [donde ? es un conjunto de parámetros de la distribución] se define la media muestral n-ésima.
Es necesario tener agrupados los datos en forma ascendente o descendente, es decir, que se tenga como primer dato el máximo o el mínimo antes de calcular la media muestral.
Mediana
La mediana es la puntación de la escala que separa la mitad superior de la distribución y la inferior, es decir divide la serie de datos en dos partes iguales. Definiremos como mediana al valor de la variable que deja el mismo número de datos antes y después que él. De acuerdo con esta definición el conjunto de datos menores o iguales que la mediana representarán el 50% de los datos, y los que sean mayores que la mediana representarán el otro 50% del total de datos de la muestra.
Moda
La moda es el valor que más se repite en una distribución. Es el dato que más se repite en la cuenta. Si existen dos datos que se repite un número igual de veces entonces el conjunto será bimodal. Ejemplo: Número de personas en distintos carros en una carretera: 5-7-4-6-9-5-6-1-5-3-7. En este caso el número que más se repite es 5 entonces la moda en este caso es 5.
En estadistica la moda es el valor que cuenta con una mayor frecuencia en una distribución de datos.
Medidas de Posición
Las medidas de posición dividen un conjunto de datos en grupos con el mismo número de individuos. Para calcular las medidas de posición es necesario que los datos estén ordenados de menor a mayor.
La medidas de posición son:
Cuartiles
Los cuartiles dividen la serie de datos en cuatro partes iguales.
Deciles
Los deciles dividen la serie de datos en diez partes iguales.
Percentiles
Los percentiles dividen la serie de datos en cien partes iguales. Representan los valores de la variable que están por debajo de un porcentaje, el cual puede ser un valor de 1% a 100% (en otras palabras, el total de los datos es divido en 100 partes iguales).
Las medidas de posición dividen un conjunto de datos en grupos con el mismo número de individuos. Para calcular las medidas de posición es necesario que los datos estén ordenados de menor a mayor.
La medidas de posición son:
Cuartiles
Los cuartiles dividen la serie de datos en cuatro partes iguales.
Deciles
Los deciles dividen la serie de datos en diez partes iguales.
Percentiles
Los percentiles dividen la serie de datos en cien partes iguales. Representan los valores de la variable que están por debajo de un porcentaje, el cual puede ser un valor de 1% a 100% (en otras palabras, el total de los datos es divido en 100 partes iguales).
Medidas de Dispersión
Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son:
Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son:
Rango o Recorrido
El rango es la diferencia entre el mayor y el menor de los datos de una distribución estadística.
Desviación Media
La desviación media es la media aritmética de los valores absolutos de las desviaciones respecto a la media.
Varianza
La varianza es la media aritmética del cuadrado de las desviaciones respecto a la media.
Desviación Típica
La desviación típica es la raíz cuadrada de la varianza.
El rango es la diferencia entre el mayor y el menor de los datos de una distribución estadística.
Desviación Media
La desviación media es la media aritmética de los valores absolutos de las desviaciones respecto a la media.
Varianza
La varianza es la media aritmética del cuadrado de las desviaciones respecto a la media.
Desviación Típica
La desviación típica es la raíz cuadrada de la varianza.
Recursos:
Ver Links: http://tgrajales.net/tendencentral.pdf