Definición de Estadística
La Estadística es una disciplina que utiliza recursos matemáticos para organizar y resumir una gran cantidad de datos obtenidos de la realidad, e inferir conclusiones respecto de ellos. Por ejemplo, la estadística interviene cuando se quiere conocer el estado sanitario de un país, a través de ciertos parámetros como la tasa de morbilidad o mortalidad de la población. En este caso la estadística describe la muestra en términos de datos organizados y resumidos, y luego infiere conclusiones respecto de la población. Aplicada a la investigación científica, también infiere cuando provee los medios matemáticos para establecer si una hipótesis debe o no ser rechazada. La estadística puede aplicarse a cualquier ámbito de la realidad, y por ello es utilizada en física, química, biología, medicina, astronomía, psicología, sociología, lingüística, demografía, etc.
La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes fases:
1. Recogida de datos.
2. Organización y representación de datos.
3. Análisis de datos.
4. Obtención de conclusiones.
Población y muestra
Puesto que la estadística se ocupa de una gran cantidad de datos, debe primeramente definir de cuáles datos se va a ocupar. El conjunto de datos de los cuales se ocupa un determinado estudio estadístico se llama población. No debe confundirse la población en sentido demográfico y la población en sentido estadístico. La población en sentido demográfico es un conjunto de individuos (todos los habitantes de un país, todas las ratas de una ciudad), mientras que una población en sentido estadístico es un conjunto de datos referidos a determinada característica o atributo de los individuos (las edades de todos los individuos de un país, el color de todas las ratas de una ciudad). Incluso una población en sentido estadístico no tiene porqué referirse a muchos individuos. Una población estadística puede ser también el conjunto de calificaciones obtenidas por un individuo a lo largo de sus estudios universitarios. Los datos de la totalidad de una población pueden obtenerse a través de un censo. Sin embargo, en la mayoría de los casos no es posible obtenerlos por razones de esfuerzo, tiempo y dinero, razón por la cual se extrae, de la población, una muestra, mediante un procedimiento llamado muestreo. Se llama muestra a un subconjunto de la población, preferiblemente representativo de la misma. Por ejemplo, si la población es el conjunto de todas las edades de los estudiantes de la provincia de Buenos Aires, una muestra será conjunto de edades de 2000 estudiantes de la provincia de Buenos Aires tomados al azar.
Datos individuales y datos estadísticos
Un dato individual es un dato de un solo individuo, mientras que un dato estadístico es un dato de una muestra o de una población en su conjunto. Por ejemplo, la edad de Juan es un dato individual, mientras que el promedio de edades de una muestra o población de personas es un dato estadístico. Desde ya, puede ocurrir que ambos no coincidan: la edad de Juan puede ser 37 años, y el promedio de edades de la muestra donde está incluído Juan es 23 años. Por esta razón un dato estadístico nada dice respecto de los individuos, porque solamente describe la muestra o población. Los datos estadísticos que describen una muestra suelen llamarse estadísticos (por ejemplo, el promedio de ingresos mensuales de las personas de una muestra), mientras que los datos estadísticos descriptores de una población suelen llamarse parámetros (por ejemplo, el promedio de ingresos mensuales de las personas de una población).
Estructura del dato
Los datos son la materia prima con que trabaja la estadística, del mismo modo que la madera es la materia prima con que trabaja el carpintero. Así como este procesa o transforma la madera para obtener un producto útil, así también el estadístico procesa o transforma los datos para obtener información útil. Tanto los datos como la madera no se inventan: se extraen de la realidad; en todo caso el secreto está en recoger la madera o los datos más adecuados a los objetivos del trabajo a realizar. De una manera general, puede definirse técnicamente dato como una categoría asignada a una variable de una unidad de análisis.
La variable es la característica, propiedad o atributo que se predica de la unidad de análisis. Por ejemplo puede ser la edad para una persona, el grado de cohesión para una familia, el nivel de aprendizaje alcanzado para un animal, el peso específico para una sustancia química, el nivel de ‘salud’ para una dentadura, y el tamaño para una mesa. Pueden entonces también definirse población estadística (o simplemente población) como el conjunto de datos acerca de unidades de análisis (individuos, objetos) en relación a una misma característica, propiedad o atributo (variable). Sobre una misma población demográfica pueden definirse varias poblaciones de datos, una para cada variable. Por ejemplo, en el conjunto de habitantes de un país (población demográfica), puede definirse una población referida a la variable edad (el conjunto de edades de los habitantes), a la variable ocupación (el conjunto de ocupaciones de los habitantes), a la variable sexo (el conjunto de condiciones de sexo de los habitantes). La categoría es cada una de las posibles variaciones de una variable. Categorías de la variable sexo son masculino y femenino, de la variable ocupación pueden ser arquitecto, médico, etc, y de la variable edad pueden ser 10 años, 11 años, etc. Cuando la variable se mide cuantitativamente, es decir cuando se expresa numéricamente, a la categoría suele llamársela valor. En estos casos, el dato incluye también una unidad de medida, como por ejemplo años, cantidad de hijos, grados de temperatura, cantidad de piezas dentarias, centímetros, etc. El valor es, entonces, cada una de las posibles variaciones de una variable cuantitativa.
La Medición
Los datos se obtienen a través un proceso llamado medición. Desde este punto de vista, puede definirse medición como el proceso por el cual asignamos una categoría (o un valor) a una variable, para determinada unidad de análisis. Ejemplo: cuando decimos que Martín es varón, estamos haciendo una medición, porque estamos asignando una categoría (varón) a una variable (sexo) para una unidad de análisis (Martín). Se pueden hacer mediciones con mayor o menor grado de precisión. Cuanto más precisa sea la medición, más información nos suministra sobre la variable y, por tanto, sobre la unidad de análisis. No es lo mismo decir que una persona es alta, a decir que mide 1,83 metros. Los diferentes grados de precisión o de contenido informativo de una medición se suelen caracterizar como niveles de medición. Típicamente se definen cuatro niveles de medición, y en cada uno de ellos la obtención del dato o resultado de la medición será diferente: Ejemplos de datos en diferentes niveles de medición: Nivel de medición, Nivel nominal Nivel ordinal, Nivel cuantitativo discreto, Nivel cuantitativo continuo.
Clasificaciones de la Estadística
Existen varias formas de clasificar los estudios estadísticos.
1) Según la etapa.- Hay una estadística descriptiva y una estadística inferencial. La primera etapa se ocupa de describir la muestra, y la segunda etapa infiere conclusiones a partir de los datos que describen la muestra (por ejemplo con respecto a la población).
2) Según el tiempo considerado.- Dentro de la estadística descriptiva se distingue la estadística estática o estructural, que describe la población en un momento dado (por ejemplo la tasa de nacimientos en determinado censo), y la estadística dinámica o evolutiva, que describe como va cambiando la población en el tiempo (por ejemplo el aumento anual en la tasa de nacimientos).
3) Según la cantidad de variables estudiada.- Desde este punto de vista hay una estadística univariada (estudia una sola variable, como por ejemplo la inteligencia, en una muestra), una estadística bivariada (estudia como están relacionadas dos variables, como por ejemplo inteligencia y alimentación), y una estadística multivariada (que estudia tres o más variables, como por ejemplo como están relacionados el sexo, la edad y la alimentación con la inteligencia).
El Razonamiento Estadístico
El razonamiento estadístico opera a través de los siguientes pasos:
• Se plantea un problema de estudio.
• Se realiza un muestreo consistente en la recolección de datos referentes al fenómeno o variable que deseamos estudiar.
• Se propone un modelo de probabilidad, cuyos parámetros se estiman mediante estadísticos a partir de los datos de muestreo. Sin embargo, se mantiene lo que se denominan “hipótesis sostenidas” (que no son sometidas a comprobación)
• Se valida el modelo comparándolo con lo que sucede en la realidad. Se utiliza métodos estadísticos conocidos como test de hipótesis y prueba de significación
• Se utiliza el modelo validado para tomar decisiones o predecir acontecimientos futuros.
Definiciones Básicas
• Población: Conjunto de todos los elementos incluidos en cierto estudio estadístico.
• Muestra: Subconjunto de la población.
• Elemento: Unidad mínima de la que se compone la población. Ramas
Tipos
En función del área a la cual se enfoque, se puede considerar: • Estadística política • Estadística industrial • Estadística social • Econometría • Bioestadística • Física estadística • Geoestadística • Estadística cuántica • Estadística descriptiva • Estadística teórica • Estadística aplicada
Definición de Variable
Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población.
Tipos de Variable Estadística
Variable Cualitativa
Las variables cualitativas se refieren a características o cualidades que no pueden ser medidas con números. Podemos distinguir dos tipos:
Variable Cualitativa Nominal
Una variable cualitativa nominal presenta modalidades no numéricas que no admiten un criterio de orden. Por ejemplo:
El estado civil, con las siguientes modalidades: soltero, casado, separado, divorciado y viudo.
Variable Cualitativa Ordinal o Variable Cuasicuantitativa
Una variable cualitativa ordinal presenta modalidades no númericas, en las que existe un orden. Por ejemplo:
*La nota en un examen: suspenso, aprobado, notable, sobresaliente.
*Puesto conseguido en una prueba deportiva: 1º, 2º, 3º, ...
*Medallas de una prueba deportiva: oro, plata, bronce.
Variable Cuantitativa
Una variable cuantitativa es la que se expresa mediante un número, por tanto se pueden realizar operaciones aritméticas con ella. Podemos distinguir dos tipos:
Variable Discreta
Una variable discreta es aquella que toma valores aislados, es decir no admite valores intermedios entre dos valores específicos. Por ejemplo:
*El número de hermanos de 5 amigos: 2, 1, 0, 1, 3.
Variable Continua
Una variable continua es aquella que puede tomar valores comprendidos entre dos números. Por ejemplo:
*La altura de los 5 amigos: 1.73, 1.82, 1.77, 1.69, 1.75. En la práctica medimos la altura con dos decimales, pero también se podría dar con tres decimales.
Ver Links: http://www.slideshare.net/MAURISOSASOSA/principios-de-estadistica
http://www.slideshare.net/jpgv84/estadstica-descriptiva-presentation
.